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PRINCIPLE OF LOCAL INFLUENCE IN THE METHOD OF STEP BY STEP 

MODELING 

G. N. Dul'nev, E. V. Sakhova, 
and A. V. Sigalov 

UDC 536.2 

The possibility of replacing spatially inhomogeneous effect on body boundaries by 
average effects is investigated. Error estimates are obtained for a temperature 
field computation. 

The crux of the step-by-step modeling of the thermal mode of complex systems is the sub- 
sequent application of a number of mathematical models possessing a different degree of de- 
tailing in the description of temperature fields [i]. In the initial stages the thermal re- 
gime of the whole system is analyzed with minimally allowable detailing and the average val- 
ues of the temperature and heat fluxes are determined~ The following approach is used in 
computing the temperature field of a certain isolated domain of the system: the boundary 
conditions for the domain under consideration are compiled on the basis of values of the tem- 
perature and heat fluxes obtained in the preceding stages of the computation. 

For a strict assignment of the boundary conditions it is necessary to know the spatial 
temperature distribution T(x) or the heat flux density q(x) on theboundary of the isolated 
domain, or in the case of boundary conditions of the third kind, the temperature distribution 
of the conditions medium Tm(x). However, the models of the previous stages that possess a 
smaller degree of detailing permit the computation of just the temperature values <Tk > and 
<qk > averaged over certain surfaces (or coordinates) 

i T (x) < > = ! q (x) dS . (1) 
Sh s h 

Hence, in the step-by-step modeling strict formulation of the boundary-value problem 
for an isolated domain of the system is replaced by an approximate formulation yielding the 
mean temperature on the sections F k 
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or the mean heat flux density 

T [r h = ( 7'1, i>. (2) 

- - ~ ' ~ l  = ( , 1 : , ) .  (3) 
U / t  ] 

or the mean temperature of the environment 

Ii ii ~ ~-g2n + ~ ( r  .... (rm,: > t 
�9 Ph 

Le t  us  n o t e  t h a t  t h e  method d e s c r i b e d  f o r  a s s i g n i n g  t h e  b o u n d a r y  c o n d i t i o n s  was used  i n  
many papers on the computation of temperature fields in complex technical objects [2-4]. 
However, we did not succeed in detecting investigations in the literature on estimates of the 
error in the computation induced by this approximation. The legitimacy of replacing the 
spatial temperature and density of the heat flux by their values averaged over the section 
of the boundary was based qualitatively on the principle of local influence [5], according 
to which the temperature distribution at a sufficient distance from the boundary should be 
insensitive to such perturbations on the boundary. In this paper an attempt is made to ob- 
tain quantitative error estimates of the temperature field computation caused by averaging 
the boundary conditions. The dependence of this error on factors characterizing the geometric 
parameters of the domain and the heat-exchange conditions on the boundaries is investigated. 
The analysis is for linear stationary problems with heat conductivity I and heat elimination 
coefficients ak independent of the coordinates on the sections rk of the boundary. 

We first consider the general formulation of the problem, and then we turn to an investi- 
gation of the error for the model problems. Compile the solution of the stationary heat- 
conduction equation 

~.V 2T + qv ' -  0 (5) 

i n  a c e r t a i n  domain D f o r  two methods  o f  g i v i n g  t h e  b o u n d a r y  c o n d i t i o n s  on t h e  s e c t i o n s  rk  
(k = 1, . . . ,  N) o f  t h e  b o u n d a r y :  

the temperatures of the environment depend on the coordinates 

-~n  + % ( T - -  Trn ~ (x)) -----0, 
F h 

t e m p e r a t u r e s  o f  t h e  med ia  a v e r a g e d  o v e r  t h e  c o r r e s p o n d i n g  bounda ry  s e c t i o n s  a r e  in  the  bound-  
a r y  c o n d i t i o n s ,  i . e . ,  c o n d i t i o n s  (4) a r e  g i v e n .  

We i n v e s t i g a t e  t h e  e r r o r  f o r  b o u n d a r y  c o n d i t i o n s  o f  t h e  t h i r d  k i n d  s i n c e  t h e  r e s u l t s  o b -  
t a i n e d  can  be e x t e n d e d  to  bounda ry  c o n d i t i o n s  o f  t h e  f i r s t  k ind  by  l e t t i n g  a -~ ~ and to  c o n -  
d i t i o n s  o f  t he  second  k i n d  by  p a s s i n g  to  t h e  l i m i t  a s  a -~ 0,  Tmk-~ ~ and ~Tmk = qk = c o n s t .  

The s o l u t i o n  o f  p r o b l e m s  ( 5 ) ,  (6) and ( 5 ) ,  (4) can  be  r e p r e s e n t e d  in  t he  fo rm 
N 

T (x) = T n (x) + ~ Tok (X), (7) 
h = l  

where T n (x) is the solution of the nonhomogeneous equation (5) for the homogeneous boundary 
conditions (Tmk = 0) and Tok(X) is the solution of the homogeneous equation (qv = 0) for a 
nonhomogeneous boundary condition on the section P k and homogeneous boundary conditions on 
t he  r e m a i n i n g  s e c t i o n s  of  t h e  b o u n d a r y  Fj (j= 1 ..... N, k---~]). 

Hence, to estimate the error caused by averaging the temperature of the medium, it is 
sufficient to consider the solution of the homogeneous equation 

v2T(x) ---- 0, xE D, (8)  

w i t h  homogeneous b o u n d a r y  c o n d i t i o n s  on t h e  s e c t i o n s  r j  o f  t h e  b o u n d a r y  o f  t h e  domain D under  
consideration 

[~ ~iT] O, l, N, k, OT 
-~-~n + = ] . . . .  . J : /=  

(9) 
] r  1 

and nonhomogeneous  c o n d i t i o n s  (4) o r  (6) on one s e c t i o n  o f  t h e  b o u n d a r y  rk. The e r r o r  o f  a 
t e m p e r a t u r e  f i e l d  c o m p u t a t i o n  f o r  s i m u l t a n e o u s  p e r t u r b a t i o n s  o f  the  bounda ry  c o n d i t i o n s  on 
a l l  s e c t i o n s  rj can  be  found  by u s i n g  t h e  s u p e r p o s i t i o n  p r i n c i p l e  in  c o n f o r m i t y  w i t h  ( 7 ) .  
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We denote the solution of the problem (8), (9), (6) by TI (x)and of the problem (8), 
(9), (4) with averaged temperature of the medium by T2 (x). The error u(x) = T1(x) -- T2(x) 
satisfies (8), homogeneous boundary conditions (9), and the following condition on the bound- 
ary 

[ Ou ~ku] ~kATm ~-n  + = ,, (x), ( l o )  
J r  h 

where ATmk(X) = Tmk(X) -- <Tmk > is the deviation of the temperature of the medium from the 
mean value, later called the perturbation of the temperature of the medium. 

We turn to a dimensionless formulation of the problem by selecting the characteristic 
dimension I k of the domain for averaging the boundary conditions F k as the length scale and 
the maximal value of the perturbation ATmk as the error scale. We introduce the following 
dimensionless quantities: the relative error 

0 (x) = u (x)/max LATIn h (x)l, ( i1 )  
xEPk 

the relative perturbation of the temperature of the medium 

0mh (x) = ATm h(x)/max lATIn,, (x)l, (12) 
x~rh 

the relative coordinate, x' =x/l h, the Blot criterion Bij = ajZk/k , j = i, ..., N. 

Then we write the problem of determining the relative error 0(x') in the form 

VZ0 = 0, xED,  (13) 

; -~- Bib 0 = BihOmk (x'), (14) 
r k 

+ Bi~O = O, 1=1 . . . .  , N, ]yak.  
Pj 

The relative error 0(x') caused by averaging the temperature of the medium depends on the 
form of the perturbation 0mk(X') , on the criteria Bij (j = I, ..., N) and on the geometric 
factors, the number and form of which is determined by the dimension and configuration of the 
domain D under consideration. 

Let us consider the passage to a dimensionless formulation of the problem in the case 
when boundary conditions of the second kind are given on the section! Fk 

Z =qh,  whereqh=qh(x)  or qh=  (qh>"  
On r h 

The solution TI(X ) obtained for qk(x) is compared with the solution T2(x) for the averaged 
flux <qk >. We determine the relative error e' as follows: 

0' (x') = L [T1 (x)--  Tz (x)] (16) 
lh max [qh (x) - -  ( q~ ) I ' 

and the boundary condition on Fk in the problem for the relative error takes the form 

a0' I = Aq~.(x'), Aq~ = q~(x)-- < ql, ) (17) 
On' r h max Iqk (x)--  < qh >1 

I t  i s  e a s y  to  show t h a t  t he  r e l a t i v e  e r r o r  0 '  can be found from the  s o l u t i o n  of  the  
problem (13) - (15 )  by p a s s i n g  to t h e  l i m i t  

0' (x') ~. lira [0 (x')/Bih] (18) 
BIke0 

and se t t ingAqk (x') = 0mk (x'). 

The error estimate for the boundary conditions of the first kind (2) can be obtained 
directly from the solution of the problem (13)-(15) for sufficiently large Bi k assuring 

Ofrk,~ 0 mk- 

The solution of problem (13)-(15) is analyzed below for different domains and recommenda- 
tions are given on the error estimate in averaging the temperatures in the boundary condi- 
tions. 
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Fig. I. Distribution of the relative error 8(0, y') on the 
boundary x' = 0 of a semiinfinite body: i) Bi § ~; 2) Bi = 
20; 3) 5; 4) 1. 

Fig. 2. Change in the maximum relative error with distance 
from the boundary: I) Bi = 5; 2) Bi = i; 3) domain of val- 
ues f(x)) = 8(x', O)/e(O, 0). 

We start with the consideration of the two-dimensional problem for a semiinifite body 
(O~<x'<0o,--0o<9'<0o). On the surface x' -- 0 a boundary condition of the third kind is given 
in which the temperature of the environment has the relative perturbation Om(y') on a certain 
bounded section. The relative error 8(x', y') is the solution of the problem 

020 020 
- -  + - -  = O, ( 1 9 )  

c)x'~ Or'2 

a8, ] 
- - -~x ' + B i 0  x'=o =Bi0m(g') ,  (20) 

~-00 [ = O, m,~ = O. (21) 
v. . '  x ' -  = v=,' tv'l ~ 

Comparing the solutions of problems (19)-(21) for different perturbations em(y') showed 
that the error reaches the greatest values for the assignment of the following kind of rela- 
tive temperature perturbation of the medium: 

i, o <ly'l < 0.5, 
Omig, ) = ,If__ I, 0,5 < V' -~< I, (22) 

/ o ,  Ir >.l ,  ly't = 
An exact analytic solution of the Problem (19)-(22), obtained by using the Fourier cosine 
transform [6] 7 has the form 

0 = 4Bi.. i (1--cosol2)sin~/2 exo( - -~x ' )cosoy 'd~ .  (23) 
o ~ ( o  + B i )  " 

Analysis of solution (23) follows two ends: firstly, to investigate how the temperature 
perturbation of the medium is "mapped" on the body surface for a different intensity of the 
heat transfer with the medium, i.e., to find the dependence of the relative error e(x' = 0) 
on the criterion Bi; secondly, to estimate the "damping" of the relative error with distance 
from the boundary into the bulk of the body. 

The distribution of the relative error 0(0, y') on the body boundary is shown in Fig. I 
for different Bi. The error for the selected form of perturbation is an even function of y' 
and its maximal value is achieved at y' = O. The change in the maximum value of the relative 
error 0max(X') with distance from the boundary is displayed in Fig. 2. The magnitude of the 
error depends on the criterion Bi, hence, to characterize the diminution in error with dis- 
tance from the boundary, we introduce the quantity f(x') = 0(x', 0)/e(0, 0) which is the 
ratio between the maximal error in the plane x' and its value on the boundary x' = 0. De- 
pendences f(x') constructed for different Bi are sufficiently close together. The domain in 
which the f(x') lie for Bi = 0.1-20 is displayed in Fig. 2. 

The dependence of the maximal relative error 0(0, O) at the boundary on Bi is repre- 
sented in Fig. 3 (curve i). For Bi < 0.2 the error becomes proportional to Bi, hence, in the 
domain of small Bi not represented on the graphs, the quantity 8 can be calculated easily. 
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Fig. 3. Dependence of the maximal relative error on the 
heat-transfer conditions on the boundary: I) semiinfinite 
body; 2, 3, 4) rectangular domain as h + = (2) ~iyo = 0; 
Biyx + ~; 3) Biyo = Biyx = 0; 4) Biyo ~ ~, Biyl § ~). 

Fig. 4. Distribution of the maximal relative error @max(X') 
in a rectangular domain: i) h + =; 2) h = i; 3) 0.5; 4) 
0.25; 5) 0.i. 

To estimate the error induced by averaging the temperature of the medium on a section 
of surface of a simiinfinite body, a formula is proposed that approximates the results ob- 
tained 

0max(X,) - Bi exp(--2 ,3x ' ) ,  0 .2~Bi~-~20,  0 ~ x ' ~ 3 .  (24) 
2.2 + Bi 

The error e' caused by averaging the heat flux density (see (16)) can be estimated from 
the formula 

@max (x') -= 0,45 exp ( - -  2,1x'), 0 ~ x '  ~ 3 .  (25) 

If the dimensions of the boundary conditions perturbation domain are commensurate with 
the body dimensions, then in estimate the error the model of a semiinfinite body can turn out 
to be inapplicable. The error in averaging the boundary conditions depends on the heat- 
transfer conditions on the other boundaries and on the body configuration in this case. We 
find the singularities of propagating the boundary condition perturbations in a bounded body 
from an examination of the following problem. A two-dimensional rectangular domain is give~ 
with the dimensions lx, ly on whose boundaries heat transfer occurs with the environment. 
The temperature of the medium is averaged on the boundary x = 0. The relative error e(x ~, 
y') is found from the solution of (19) with the boundary conditions 

[00_7@ BixoO l ----Bi~o rn(V ), @ , (26) 
[ ox + 7 Jx'=o 

-T-ZT;~., - I- Biuo,yl 0 = O, (27) 
Jv'=O,1 

where  Bik  = e t k l y / X ,  k = xO, x l ,  yO, y l ,  x '  = X / / y ,  y '  = y / l y ,  h = l x / l y .  

The perturbations 0m(y') is given in form (22). An exact analytic solution of the prob= 
lem (19), (26), (27) is obtained by using the Fourier integral transform in the variable y' 
[6]. 

Dependences of the maximal relative error on the boundary x' = 0 on the criterion Bixo 
as h -~ = are represented in Fig. 3 for different limit cases of the heat-exchange conditions 
on the boundaries y' = 0 and y' = i. The error reaches the highest values under the condi- 
tions Biyo = 0, Biyx -> ~ and the least for Biyo -~ ~, Biyx -~ ~. For an approximate estimate 
of the maximal error, the results obtained for a semiinfinite body (curve i) can be used. 

The change in the maximum relative error with distance from the boundary x' = 0 is 
shown in Fig. 4 for different relationships between the body dimensions h = lx/ly. For h > 1 
the error distribution depends negligibly on the heat-transfer conditions on the boundary 
x' = h and on the quantity h, consequently, results for the case h -> ~ can be used. For 
small h the influence of the boundary x' = h becomes substantial, where the highest errors 
occur in the case of the adiabatic condition Bixl = O. 
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The results,brained yield quantitative estimates of the errors associated with replace- 
ment of the spatial temperature distributions of the medium and of the heat-flux density of 
their values averaged over the boundary section, which permits a well-founded approach to the 
selection of algorithms of the step-by-step modeling of the thermal regime of a system of 
bodies. 

NOTATION 

T, Tm, temperature of the body and the conditional medium; q, heat-flux density; ~, heat 
conductivity; e, heat-transfer coefficient; qv, specific power of the heat sources; x, radius- 
vector; e, relative error in computing the temperature under average boundary conditions; ~k, 
governing dimension of a section of the boundary Fk; x', y', relative coordinates; Bi, Blot 
criterion. 
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APPROXIMATE SOLUTION OF THE STEFAN PROBLEM ON A SEGMENT 

A. O. Gliko, A. B. Efimov, 
and S. A. Labutin 

UDC 536.24.02 

The behavior of the temperature and the boundary near the stationary state are 
studied in the single-phase Stefan problem for certain types of thermal flux varia- 
tions. 

The perturbation of the stationary solution of the Stefan problem on a segment for small 
changes in the flux acting on the boundary was examined in [1,2], where general expressions 
are obtained for the boundary and temperature for 0~<oo ~ A detailed investigation of this 
approximate solution is quite important in applications but it is difficult for arbitrary 
flux perturbations. The mostcharacteristic cases (step and sinusoidal thermal flux varia- 
tion) are analyzed in detail in this paper, hence, asymptotic formulas are obtained for the 
solution for "small" and "large" times. The general solution of the problem under considera- 
tion is also simplified for slow and smooth flux changes. 

The problem is formulated as follows. Find the classical solution of a system of equa- 
tions with additional conditions 

*The method used to obtain this solution was also applied in the two-phase problem [3]. 
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